Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Journal of Food Biochemistry. ; 46(12):Not Available, 2023.
Article in English | EuropePMC | ID: covidwho-2325476

ABSTRACT

Nutraceuticals have emerged as potential compounds to attenuate the COVID‐19 complications. Precisely, these food additives strengthen the overall COVID treatment and enhance the immunity of a person. Such compounds have been used at a large scale, in almost every household due to their better affordability and easy access. Therefore, current research is focused on developing newer advanced formulations from potential drug candidates including nutraceuticals with desirable properties viz, affordability, ease of availability, ease of administration, stability under room temperature, and potentially longer shelf‐lives. As such, various nutraceutical‐based products such as compounds could be promising agents for effectively managing COVID‐19 symptoms and complications. Most importantly, regular consumption of such nutraceuticals has been shown to boost the immune system and prevent viral infections. Nutraceuticals such as vitamins, amino acids, flavonoids like curcumin, and probiotics have been studied for their role in the prevention of COVID‐19 symptoms such as fever, pain, malaise, and dry cough. In this review, we have critically reviewed the potential of various nutraceutical‐based therapeutics for the management of COVID‐19. We searched the information relevant to our topic from search engines such as PubMed and Scopus using COVID‐19, nutraceuticals, probiotics, and vitamins as a keyword. Any scientific literature published in a language other than English was excluded. PRACTICAL APPLICATIONS: Nutraceuticals possess both nutritional values and medicinal properties. They can aid in the prevention and treatment of diseases, as well as promote physical health and the immune system, normalizing body functions, and improving longevity. Recently, nutraceuticals such as probiotics, vitamins, polyunsaturated fatty acids, trace minerals, and medicinal plants have attracted considerable attention and are widely regarded as potential alternatives to current therapeutic options for the effective management of various diseases, including COVID‐19.

2.
Med Res Rev ; 2023 Apr 29.
Article in English | MEDLINE | ID: covidwho-2303733

ABSTRACT

The global burden of respiratory diseases is enormous, with many millions of people suffering and dying prematurely every year. The global COVID-19 pandemic witnessed recently, along with increased air pollution and wildfire events, increases the urgency of identifying the most effective therapeutic measures to combat these diseases even further. Despite increasing expenditure and extensive collaborative efforts to identify and develop the most effective and safe treatments, the failure rates of drugs evaluated in human clinical trials are high. To reverse these trends and minimize the cost of drug development, ineffective drug candidates must be eliminated as early as possible by employing new, efficient, and accurate preclinical screening approaches. Animal models have been the mainstay of pulmonary research as they recapitulate the complex physiological processes, Multiorgan interplay, disease phenotypes of disease, and the pharmacokinetic behavior of drugs. Recently, the use of advanced culture technologies such as organoids and lung-on-a-chip models has gained increasing attention because of their potential to reproduce human diseased states and physiology, with clinically relevant responses to drugs and toxins. This review provides an overview of different animal models for studying respiratory diseases and evaluating drugs. We also highlight recent progress in cell culture technologies to advance integrated models and discuss current challenges and present future perspectives.

3.
Chem Biol Interact ; 368: 110231, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2250366

ABSTRACT

The human microbiota is fundamental to correct immune system development and balance. Dysbiosis, or microbial content alteration in the gut and respiratory tract, is associated with immune system dysfunction and lung disease development. The microbiota's influence on human health and disease is exerted through the abundance of metabolites produced by resident microorganisms, where short-chain fatty acids (SCFAs) represent the fundamental class. SCFAs are mainly produced by the gut microbiota through anaerobic fermentation of dietary fibers, and are known to influence the homeostasis, susceptibility to and outcome of many lung diseases. This article explores the microbial species found in healthy human gastrointestinal and respiratory tracts. We investigate factors contributing to dysbiosis in lung illness, and the gut-lung axis and its association with lung diseases, with a particular focus on the functions and mechanistic roles of SCFAs in these processes. The key focus of this review is a discussion of the main metabolites of the intestinal microbiota that contribute to host-pathogen interactions: SCFAs, which are formed by anaerobic fermentation. These metabolites include propionate, acetate, and butyrate, and are crucial for the preservation of immune homeostasis. Evidence suggests that SCFAs prevent infections by directly affecting host immune signaling. This review covers the various and intricate ways through which SCFAs affect the immune system's response to infections, with a focus on pulmonary diseases including chronic obstructive pulmonary diseases, asthma, lung cystic fibrosis, and tuberculosis. The findings reviewed suggest that the immunological state of the lung may be indirectly influenced by elements produced by the gut microbiota. SCFAs represent valuable potential therapeutic candidates in this context.


Subject(s)
Asthma , Gastrointestinal Microbiome , Humans , Dysbiosis/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/therapeutic use , Lung/metabolism , Asthma/drug therapy
4.
Cosmetics ; 10(1):34.0, 2023.
Article in English | MDPI | ID: covidwho-2241673

ABSTRACT

Apart from well-known respiratory symptoms, less frequent symptoms also appear as a direct result of COVID-19 infection, or as indirect effects of the recommended quarantine and related lifestyle changes. The impact of the COVID-19 pandemic on human skin is predominantly focused on in this article. Cutaneous manifestations, including redness, chilblain-like symptoms (COVID toes), hives or urticaria rash, water blisters, and fishing net-like red-blue patterns on the skin, may appear as accompanying or as systemic COVID-19 symptoms with potential lesions at different skin sites. These symptoms were related to skin phototypes and vitamin D deficiency. Moreover, Black, Asian, and minority ethnic origin patients are found to be more sensitive to COVID-19 infection than Caucasians because of vitamin D deficiency. The region of population with lighter skin phototypes have a significantly higher chance to develop cutaneous manifestations than population with dark skin. In addition, adverse effects, such as skin barrier damage and irritation, may also occur due to extensive personal protective equipment usage (e.g., masks, protective suits, and a few others) and predominately alcohol-based sanitizers. This manuscript covers various aspects of COVID-19 and its clinical skin manifestations.

5.
Int J Rheum Dis ; 2022 Oct 29.
Article in English | MEDLINE | ID: covidwho-2238811

ABSTRACT

COVID-19 remains a life-threatening infectious disease worldwide. Several bio-active agents have been tested and evaluated in an effort to contain this disease. Unfortunately, none of the therapies have been successful, owing to their safety concerns and the presence of various adverse effects. Various countries have developed vaccines as a preventive measure; however, they have not been widely accepted as effective strategies. The virus has proven to be exceedingly contagious and lethal, so finding an effective treatment strategy has been a top priority in medical research. The significance of vitamin D in influencing many components of the innate and adaptive immune systems is examined in this study. This review aims to summarize the research on the use of vitamin D for COVID-19 treatment and prevention. Vitamin D supplementation has now become an efficient option to boost the immune response for all ages in preventing the spread of infection. Vitamin D is an immunomodulator that treats infected lung tissue by improving innate and adaptive immune responses and downregulating the inflammatory cascades. The preventive action exerted by vitamin D supplementation (at a specific dose) has been accepted by several observational research investigations and clinical trials on the avoidance of viral and acute respiratory dysfunctions. To assess the existing consensus about vitamin D supplementation as a strategy to treat and prevent the development and progression of COVID-19 disease, this review intends to synthesize the evidence around vitamin D in relation to COVID-19 infection.

7.
J Food Biochem ; : e14445, 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2078554

ABSTRACT

Nutraceuticals have emerged as potential compounds to attenuate the COVID-19 complications. Precisely, these food additives strengthen the overall COVID treatment and enhance the immunity of a person. Such compounds have been used at a large scale, in almost every household due to their better affordability and easy access. Therefore, current research is focused on developing newer advanced formulations from potential drug candidates including nutraceuticals with desirable properties viz, affordability, ease of availability, ease of administration, stability under room temperature, and potentially longer shelf-lives. As such, various nutraceutical-based products such as compounds could be promising agents for effectively managing COVID-19 symptoms and complications. Most importantly, regular consumption of such nutraceuticals has been shown to boost the immune system and prevent viral infections. Nutraceuticals such as vitamins, amino acids, flavonoids like curcumin, and probiotics have been studied for their role in the prevention of COVID-19 symptoms such as fever, pain, malaise, and dry cough. In this review, we have critically reviewed the potential of various nutraceutical-based therapeutics for the management of COVID-19. We searched the information relevant to our topic from search engines such as PubMed and Scopus using COVID-19, nutraceuticals, probiotics, and vitamins as a keyword. Any scientific literature published in a language other than English was excluded. PRACTICAL APPLICATIONS: Nutraceuticals possess both nutritional values and medicinal properties. They can aid in the prevention and treatment of diseases, as well as promote physical health and the immune system, normalizing body functions, and improving longevity. Recently, nutraceuticals such as probiotics, vitamins, polyunsaturated fatty acids, trace minerals, and medicinal plants have attracted considerable attention and are widely regarded as potential alternatives to current therapeutic options for the effective management of various diseases, including COVID-19.

8.
Pharmaceutics ; 13(12)2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1957413

ABSTRACT

Respiratory diseases contribute to a significant percentage of mortality and morbidity worldwide. The circadian rhythm is a natural biological process where our bodily functions align with the 24 h oscillation (sleep-wake cycle) process and are controlled by the circadian clock protein/gene. Disruption of the circadian rhythm could alter normal lung function. Chronotherapy is a type of therapy provided at specific time intervals based on an individual's circadian rhythm. This would allow the drug to show optimum action, and thereby modulate its pharmacokinetics to lessen unwanted or unintended effects. In this review, we deliberated on the recent advances employed in chrono-targeted therapeutics for chronic respiratory diseases.

9.
Journal of Drug Delivery Science and Technology ; 74:103598, 2022.
Article in English | ScienceDirect | ID: covidwho-1936761

ABSTRACT

Dextran, a hydrophilic polysaccharide consists essentially of α-1,6 linked glucopyranoside residues that form the parent chain, along with α-1,2/3/4 linked residues that constitute its side chain. A considerable biocompatibility, stability under mildly acidic and basic conditions, solubility in water, non-immunogenicity, and presence of chemically modifiable –OH groups make dextran an ideal candidate for development of drug delivery vehicles and excipients. The presence of α-1,6 linkages in the parent chain provides enhanced chain mobility that determines the aqueous solubility of dextran, while its metabolism by the digestive enzymes to generate physiologically harmless degradation products validates its biocompatibility. Native dextran can be tuned for the development of pH-sensitive delivery systems by chemical modification that ensure an optimal drug concentration at the target site, and lowered dosing frequency that may ensure an overall improved patient compliance. The physicochemical properties of dextran can be changed by performing a chemical modification predominantly at the –OH group to obtain ester, ether, acetal, and dialdehyde of dextran. The review presented by us is a comprehensive account of the chemical modification strategies for native dextran and their clinical applications in containing pulmonary diseases. Furthermore, the presented review highlights the importance of nanomaterials derived from chemically modified dextran for the management of an optimal respiratory health by containing the inflammatory respiratory diseases.

10.
Environ Sci Pollut Res Int ; 29(36): 54072-54087, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1877927

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease associated with the respiratory system caused by the SARS-CoV-2 virus. The aim of this review article is to establish an understanding about the relationship between autoimmune conditions and COVID-19 infections. Although majority of the population have been protected with vaccines against this virus, there is yet a successful curative medication for this disease. The use of autoimmune medications has been widely considered to control the infection, thus postulating possible relationships between COVID-19 and autoimmune diseases. Several studies have suggested the correlation between autoantibodies detected in patients and the severity of the COVID-19 disease. Studies have indicated that the SARS-CoV-2 virus can disrupt the self-tolerance mechanism of the immune system, thus triggering autoimmune conditions. This review discusses the current scenario and future prospects of promising therapeutic strategies that may be employed to regulate such autoimmune conditions.


Subject(s)
Autoimmune Diseases , COVID-19 , Autoantibodies , Humans , SARS-CoV-2 , Virulence
11.
Int J Pharm ; 621: 121790, 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1814550

ABSTRACT

Biomimetic nanotechnology could serve as an advancement in the domain of drug delivery and diagnosis with the application of natural cell membrane or synthetically-derived membrane nanoparticles (NPs). These biomimetic NPs endow significant therapeutic and diagnostic efficacy by their unique properties, such as immune invasion and better targeting ability. Additionally, these NPs have a unique ability to retain the inherent properties of cell membrane and membrane's intrinsic functionalities, which helps them to exhibit superior therapeutic effects. In this review, we describe how these membrane-clocked NPs endow superior therapeutic effects by immune invasion; along with this, the development of membrane-coated NPs and their method of preparation and characterization has been clearly described in the manuscript. Moreover, Various developed membrane-coated NPs such as red blood cell membrane-coated NPs, white blood cells membrane-coated NPs, platelet membrane coated, cancer cell membrane coated, bacterial membrane vesicles and, mesenchymal stem cells membrane-coated NPs have been established in this manuscript. At last, the discussion on the role of membrane-coated NPs as theranostics, and notably, the literature that demonstrates the shreds of evidences of these NPs in targeting and neutralizing the SARS-CoV-2 virus have also been incorporated.


Subject(s)
COVID-19 Drug Treatment , Nanoparticles , Cell Membrane , Drug Delivery Systems , Humans , SARS-CoV-2
12.
Life Sci ; 283: 119871, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1336712

ABSTRACT

Non-communicable, chronic respiratory diseases (CRDs) affect millions of individuals worldwide. The course of these CRDs (asthma, chronic obstructive pulmonary disease, and cystic fibrosis) are often punctuated by microbial infections that may result in hospitalization and are associated with increased risk of morbidity and mortality, as well as reduced quality of life. Interleukin-13 (IL-13) is a key protein that regulates airway inflammation and mucus hypersecretion. There has been much interest in IL-13 from the last two decades. This cytokine is believed to play a decisive role in the exacerbation of inflammation during the course of viral infections, especially, in those with pre-existing CRDs. Here, we discuss the common viral infections in CRDs, as well as the potential role that IL-13 plays in the virus-induced disease pathogenesis of CRDs. We also discuss, in detail, the immune-modulation potential of IL-13 that could be translated to in-depth studies to develop IL-13-based therapeutic entities.


Subject(s)
Influenza, Human/immunology , Interleukin-13/immunology , Lung Diseases/immunology , Chronic Disease , Humans , Inflammation/immunology , Inflammation/pathology , Influenza, Human/pathology , Lung Diseases/pathology , Mucus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL